{Parser} = require 'jison'
The CoffeeScript parser is generated by Jison from this grammar file. Jison is a bottom-up parser generator, similar in style to Bison, implemented in JavaScript. It can recognize LALR(1), LR(0), SLR(1), and LR(1) type grammars. To create the Jison parser, we list the pattern to match on the left-hand side, and the action to take (usually the creation of syntax tree nodes) on the right. As the parser runs, it shifts tokens from our token stream, from left to right, and attempts to match the token sequence against the rules below. When a match can be made, it reduces into the nonterminal (the enclosing name at the top), and we proceed from there.
If you run the cake build:parser
command, Jison constructs a parse table
from our rules and saves it into lib/parser.js
.
The only dependency is on the Jison.Parser.
{Parser} = require 'jison'
Since we’re going to be wrapped in a function by Jison in any case, if our action immediately returns a value, we can optimize by removing the function wrapper and just returning the value directly.
unwrap = /^function\s*\(\)\s*\{\s*return\s*([\s\S]*);\s*\}/
Our handy DSL for Jison grammar generation, thanks to Tim Caswell. For every rule in the grammar, we pass the pattern-defining string, the action to run, and extra options, optionally. If no action is specified, we simply pass the value of the previous nonterminal.
o = (patternString, action, options) ->
patternString = patternString.replace /\s{2,}/g, ' '
patternCount = patternString.split(' ').length
if action
This code block does string replacements in the generated parser.js
file, replacing the calls to the LOC
function and other strings as
listed below.
action = if match = unwrap.exec action then match[1] else "(#{action}())"
All runtime functions we need are defined on yy
action = action.replace /\bnew /g, '$&yy.'
action = action.replace /\b(?:Block\.wrap|extend)\b/g, 'yy.$&'
Returns strings of functions to add to parser.js
which add extra data
that nodes may have, such as comments or location data. Location data
is added to the first parameter passed in, and the parameter is returned.
If the parameter is not a node, it will just be passed through unaffected.
getAddDataToNodeFunctionString = (first, last, forceUpdateLocation = yes) ->
"yy.addDataToNode(yy, @#{first}, #{if first[0] is '$' then '$$' else '$'}#{first}, #{if last then "@#{last}, #{if last[0] is '$' then '$$' else '$'}#{last}" else 'null, null'}, #{if forceUpdateLocation then 'true' else 'false'})"
This code replaces the calls to LOC
with the yy.addDataToNode
string
defined above. The LOC
function, when used below in the grammar rules,
is used to make sure that newly created node class objects get correct
location data assigned to them. By default, the grammar will assign the
location data spanned by all of the tokens on the left (e.g. a string
such as 'Body TERMINATOR Line'
) to the “top-level” node returned by
the grammar rule (the function on the right). But for “inner” node class
objects created by grammar rules, they won’t get correct location data
assigned to them without adding LOC
.
For example, consider the grammar rule 'NEW_TARGET . Property'
, which
is handled by a function that returns
new MetaProperty LOC(1)(new IdentifierLiteral $1), LOC(3)(new Access $3)
.
The 1
in LOC(1)
refers to the first token (NEW_TARGET
) and the 3
in LOC(3)
refers to the third token (Property
). In order for the
new IdentifierLiteral
to get assigned the location data corresponding
to new
in the source code, we use
LOC(1)(new IdentifierLiteral ...)
to mean “assign the location data of
the first token of this grammar rule (NEW_TARGET
) to this
new IdentifierLiteral
”. The LOC(3)
means “assign the location data of
the third token of this grammar rule (Property
) to this
new Access
”.
returnsLoc = /^LOC/.test action
action = action.replace /LOC\(([0-9]*)\)/g, getAddDataToNodeFunctionString('$1')
A call to LOC
with two arguments, e.g. LOC(2,4)
, sets the location
data for the generated node on both of the referenced tokens (the second
and fourth in this example).
action = action.replace /LOC\(([0-9]*),\s*([0-9]*)\)/g, getAddDataToNodeFunctionString('$1', '$2')
performActionFunctionString = "$$ = #{getAddDataToNodeFunctionString(1, patternCount, not returnsLoc)}(#{action});"
else
performActionFunctionString = '$$ = $1;'
[patternString, performActionFunctionString, options]
In all of the rules that follow, you’ll see the name of the nonterminal as the key to a list of alternative matches. With each match’s action, the dollar-sign variables are provided by Jison as references to the value of their numeric position, so in this rule:
'Expression UNLESS Expression'
$1
would be the value of the first Expression
, $2
would be the token
for the UNLESS
terminal, and $3
would be the value of the second
Expression
.
grammar =
The Root is the top-level node in the syntax tree. Since we parse bottom-up, all parsing must end here.
Root: [
o '', -> new Root new Block
o 'Body', -> new Root $1
]
Any list of statements and expressions, separated by line breaks or semicolons.
Body: [
o 'Line', -> Block.wrap [$1]
o 'Body TERMINATOR Line', -> $1.push $3
o 'Body TERMINATOR'
]
Block and statements, which make up a line in a body. FuncDirective is a statement, but not included in Statement because that results in an ambiguous grammar.
Line: [
o 'Expression'
o 'ExpressionLine'
o 'Statement'
o 'FuncDirective'
]
FuncDirective: [
o 'YieldReturn'
o 'AwaitReturn'
]
Pure statements which cannot be expressions.
Statement: [
o 'Return'
o 'STATEMENT', -> new StatementLiteral $1
o 'Import'
o 'Export'
]
All the different types of expressions in our language. The basic unit of CoffeeScript is the Expression – everything that can be an expression is one. Blocks serve as the building blocks of many other rules, making them somewhat circular.
Expression: [
o 'Value'
o 'Code'
o 'Operation'
o 'Assign'
o 'If'
o 'Try'
o 'While'
o 'For'
o 'Switch'
o 'Class'
o 'Throw'
o 'Yield'
]
Expressions which are written in single line and would otherwise require being
wrapped in braces: E.g a = b if do -> f a is 1
, if f (a) -> a*2 then ...
,
for x in do (obj) -> f obj when x > 8 then f x
ExpressionLine: [
o 'CodeLine'
o 'IfLine'
o 'OperationLine'
]
Yield: [
o 'YIELD', -> new Op $1, new Value new Literal ''
o 'YIELD Expression', -> new Op $1, $2
o 'YIELD INDENT Object OUTDENT', -> new Op $1, $3
o 'YIELD FROM Expression', -> new Op $1.concat($2), $3
]
An indented block of expressions. Note that the Rewriter will convert some postfix forms into blocks for us, by adjusting the token stream.
Block: [
o 'INDENT OUTDENT', -> new Block
o 'INDENT Body OUTDENT', -> $2
]
Identifier: [
o 'IDENTIFIER', -> new IdentifierLiteral $1
o 'JSX_TAG', -> new JSXTag $1.toString(),
tagNameLocationData: $1.tagNameToken[2]
closingTagOpeningBracketLocationData: $1.closingTagOpeningBracketToken?[2]
closingTagSlashLocationData: $1.closingTagSlashToken?[2]
closingTagNameLocationData: $1.closingTagNameToken?[2]
closingTagClosingBracketLocationData: $1.closingTagClosingBracketToken?[2]
]
Property: [
o 'PROPERTY', -> new PropertyName $1.toString()
]
Alphanumerics are separated from the other Literal matchers because they can also serve as keys in object literals.
AlphaNumeric: [
o 'NUMBER', -> new NumberLiteral $1.toString(), parsedValue: $1.parsedValue
o 'String'
]
String: [
o 'STRING', ->
new StringLiteral(
$1.slice 1, -1 # strip artificial quotes and unwrap to primitive string
quote: $1.quote
initialChunk: $1.initialChunk
finalChunk: $1.finalChunk
indent: $1.indent
double: $1.double
heregex: $1.heregex
)
o 'STRING_START Interpolations STRING_END', -> new StringWithInterpolations Block.wrap($2), quote: $1.quote, startQuote: LOC(1)(new Literal $1.toString())
]
Interpolations: [
o 'InterpolationChunk', -> [$1]
o 'Interpolations InterpolationChunk', -> $1.concat $2
]
InterpolationChunk: [
o 'INTERPOLATION_START Body INTERPOLATION_END', -> new Interpolation $2
o 'INTERPOLATION_START INDENT Body OUTDENT INTERPOLATION_END', -> new Interpolation $3
o 'INTERPOLATION_START INTERPOLATION_END', -> new Interpolation
o 'String', -> $1
]
The .toString() calls here and elsewhere are to convert String
objects
back to primitive strings now that we’ve retrieved stowaway extra properties
Regex: [
o 'REGEX', -> new RegexLiteral $1.toString(), delimiter: $1.delimiter, heregexCommentTokens: $1.heregexCommentTokens
o 'REGEX_START Invocation REGEX_END', -> new RegexWithInterpolations $2, heregexCommentTokens: $3.heregexCommentTokens
]
All of our immediate values. Generally these can be passed straight through and printed to JavaScript.
Literal: [
o 'AlphaNumeric'
o 'JS', -> new PassthroughLiteral $1.toString(), here: $1.here, generated: $1.generated
o 'Regex'
o 'UNDEFINED', -> new UndefinedLiteral $1
o 'NULL', -> new NullLiteral $1
o 'BOOL', -> new BooleanLiteral $1.toString(), originalValue: $1.original
o 'INFINITY', -> new InfinityLiteral $1.toString(), originalValue: $1.original
o 'NAN', -> new NaNLiteral $1
]
Assignment of a variable, property, or index to a value.
Assign: [
o 'Assignable = Expression', -> new Assign $1, $3
o 'Assignable = TERMINATOR Expression', -> new Assign $1, $4
o 'Assignable = INDENT Expression OUTDENT', -> new Assign $1, $4
]
Assignment when it happens within an object literal. The difference from the ordinary Assign is that these allow numbers and strings as keys.
AssignObj: [
o 'ObjAssignable', -> new Value $1
o 'ObjRestValue'
o 'ObjAssignable : Expression', -> new Assign LOC(1)(new Value $1), $3, 'object',
operatorToken: LOC(2)(new Literal $2)
o 'ObjAssignable :
INDENT Expression OUTDENT', -> new Assign LOC(1)(new Value $1), $4, 'object',
operatorToken: LOC(2)(new Literal $2)
o 'SimpleObjAssignable = Expression', -> new Assign LOC(1)(new Value $1), $3, null,
operatorToken: LOC(2)(new Literal $2)
o 'SimpleObjAssignable =
INDENT Expression OUTDENT', -> new Assign LOC(1)(new Value $1), $4, null,
operatorToken: LOC(2)(new Literal $2)
]
SimpleObjAssignable: [
o 'Identifier'
o 'Property'
o 'ThisProperty'
]
ObjAssignable: [
o 'SimpleObjAssignable'
o '[ Expression ]', -> new Value new ComputedPropertyName $2
o '@ [ Expression ]', -> new Value LOC(1)(new ThisLiteral $1), [LOC(3)(new ComputedPropertyName($3))], 'this'
o 'AlphaNumeric'
]
Object literal spread properties.
ObjRestValue: [
o 'SimpleObjAssignable ...', -> new Splat new Value $1
o '... SimpleObjAssignable', -> new Splat new Value($2), postfix: no
o 'ObjSpreadExpr ...', -> new Splat $1
o '... ObjSpreadExpr', -> new Splat $2, postfix: no
]
ObjSpreadExpr: [
o 'ObjSpreadIdentifier'
o 'Object'
o 'Parenthetical'
o 'Super'
o 'This'
o 'SUPER OptFuncExist Arguments', -> new SuperCall LOC(1)(new Super), $3, $2.soak, $1
o 'DYNAMIC_IMPORT Arguments', -> new DynamicImportCall LOC(1)(new DynamicImport), $2
o 'SimpleObjAssignable OptFuncExist Arguments', -> new Call (new Value $1), $3, $2.soak
o 'ObjSpreadExpr OptFuncExist Arguments', -> new Call $1, $3, $2.soak
]
ObjSpreadIdentifier: [
o 'SimpleObjAssignable Accessor', -> (new Value $1).add $2
o 'ObjSpreadExpr Accessor', -> (new Value $1).add $2
]
A return statement from a function body.
Return: [
o 'RETURN Expression', -> new Return $2
o 'RETURN INDENT Object OUTDENT', -> new Return new Value $3
o 'RETURN', -> new Return
]
YieldReturn: [
o 'YIELD RETURN Expression', -> new YieldReturn $3, returnKeyword: LOC(2)(new Literal $2)
o 'YIELD RETURN', -> new YieldReturn null, returnKeyword: LOC(2)(new Literal $2)
]
AwaitReturn: [
o 'AWAIT RETURN Expression', -> new AwaitReturn $3, returnKeyword: LOC(2)(new Literal $2)
o 'AWAIT RETURN', -> new AwaitReturn null, returnKeyword: LOC(2)(new Literal $2)
]
The Code node is the function literal. It’s defined by an indented block of Block preceded by a function arrow, with an optional parameter list.
Code: [
o 'PARAM_START ParamList PARAM_END FuncGlyph Block', -> new Code $2, $5, $4, LOC(1)(new Literal $1)
o 'FuncGlyph Block', -> new Code [], $2, $1
]
The Codeline is the Code node with Line instead of indented Block.
CodeLine: [
o 'PARAM_START ParamList PARAM_END FuncGlyph Line', -> new Code $2, LOC(5)(Block.wrap [$5]), $4,
LOC(1)(new Literal $1)
o 'FuncGlyph Line', -> new Code [], LOC(2)(Block.wrap [$2]), $1
]
CoffeeScript has two different symbols for functions. ->
is for ordinary
functions, and =>
is for functions bound to the current value of this.
FuncGlyph: [
o '->', -> new FuncGlyph $1
o '=>', -> new FuncGlyph $1
]
An optional, trailing comma.
OptComma: [
o ''
o ','
]
The list of parameters that a function accepts can be of any length.
ParamList: [
o '', -> []
o 'Param', -> [$1]
o 'ParamList , Param', -> $1.concat $3
o 'ParamList OptComma TERMINATOR Param', -> $1.concat $4
o 'ParamList OptComma INDENT ParamList OptComma OUTDENT', -> $1.concat $4
]
A single parameter in a function definition can be ordinary, or a splat that hoovers up the remaining arguments.
Param: [
o 'ParamVar', -> new Param $1
o 'ParamVar ...', -> new Param $1, null, on
o '... ParamVar', -> new Param $2, null, postfix: no
o 'ParamVar = Expression', -> new Param $1, $3
o '...', -> new Expansion
]
Function Parameters
ParamVar: [
o 'Identifier'
o 'ThisProperty'
o 'Array'
o 'Object'
]
A splat that occurs outside of a parameter list.
Splat: [
o 'Expression ...', -> new Splat $1
o '... Expression', -> new Splat $2, {postfix: no}
]
Variables and properties that can be assigned to.
SimpleAssignable: [
o 'Identifier', -> new Value $1
o 'Value Accessor', -> $1.add $2
o 'Code Accessor', -> new Value($1).add $2
o 'ThisProperty'
]
Everything that can be assigned to.
Assignable: [
o 'SimpleAssignable'
o 'Array', -> new Value $1
o 'Object', -> new Value $1
]
The types of things that can be treated as values – assigned to, invoked as functions, indexed into, named as a class, etc.
Value: [
o 'Assignable'
o 'Literal', -> new Value $1
o 'Parenthetical', -> new Value $1
o 'Range', -> new Value $1
o 'Invocation', -> new Value $1
o 'DoIife', -> new Value $1
o 'This'
o 'Super', -> new Value $1
o 'MetaProperty', -> new Value $1
]
A super
-based expression that can be used as a value.
Super: [
o 'SUPER . Property', -> new Super LOC(3)(new Access $3), LOC(1)(new Literal $1)
o 'SUPER INDEX_START Expression INDEX_END', -> new Super LOC(3)(new Index $3), LOC(1)(new Literal $1)
o 'SUPER INDEX_START INDENT Expression OUTDENT INDEX_END', -> new Super LOC(4)(new Index $4), LOC(1)(new Literal $1)
]
A “meta-property” access e.g. new.target
or import.meta
, where
something that looks like a property is referenced on a keyword.
MetaProperty: [
o 'NEW_TARGET . Property', -> new MetaProperty LOC(1)(new IdentifierLiteral $1), LOC(3)(new Access $3)
o 'IMPORT_META . Property', -> new MetaProperty LOC(1)(new IdentifierLiteral $1), LOC(3)(new Access $3)
]
The general group of accessors into an object, by property, by prototype or by array index or slice.
Accessor: [
o '. Property', -> new Access $2
o '?. Property', -> new Access $2, soak: yes
o ':: Property', -> [LOC(1)(new Access new PropertyName('prototype'), shorthand: yes), LOC(2)(new Access $2)]
o '?:: Property', -> [LOC(1)(new Access new PropertyName('prototype'), shorthand: yes, soak: yes), LOC(2)(new Access $2)]
o '::', -> new Access new PropertyName('prototype'), shorthand: yes
o '?::', -> new Access new PropertyName('prototype'), shorthand: yes, soak: yes
o 'Index'
]
Indexing into an object or array using bracket notation.
Index: [
o 'INDEX_START IndexValue INDEX_END', -> $2
o 'INDEX_START INDENT IndexValue OUTDENT INDEX_END', -> $3
o 'INDEX_SOAK Index', -> extend $2, soak: yes
]
IndexValue: [
o 'Expression', -> new Index $1
o 'Slice', -> new Slice $1
]
In CoffeeScript, an object literal is simply a list of assignments.
Object: [
o '{ AssignList OptComma }', -> new Obj $2, $1.generated
]
Assignment of properties within an object literal can be separated by comma, as in JavaScript, or simply by newline.
AssignList: [
o '', -> []
o 'AssignObj', -> [$1]
o 'AssignList , AssignObj', -> $1.concat $3
o 'AssignList OptComma TERMINATOR AssignObj', -> $1.concat $4
o 'AssignList OptComma INDENT AssignList OptComma OUTDENT', -> $1.concat $4
]
Class definitions have optional bodies of prototype property assignments, and optional references to the superclass.
Class: [
o 'CLASS', -> new Class
o 'CLASS Block', -> new Class null, null, $2
o 'CLASS EXTENDS Expression', -> new Class null, $3
o 'CLASS EXTENDS Expression Block', -> new Class null, $3, $4
o 'CLASS SimpleAssignable', -> new Class $2
o 'CLASS SimpleAssignable Block', -> new Class $2, null, $3
o 'CLASS SimpleAssignable EXTENDS Expression', -> new Class $2, $4
o 'CLASS SimpleAssignable EXTENDS Expression Block', -> new Class $2, $4, $5
]
Import: [
o 'IMPORT String', -> new ImportDeclaration null, $2
o 'IMPORT String ASSERT Object', -> new ImportDeclaration null, $2, $4
o 'IMPORT ImportDefaultSpecifier FROM String', -> new ImportDeclaration new ImportClause($2, null), $4
o 'IMPORT ImportDefaultSpecifier FROM String ASSERT Object', -> new ImportDeclaration new ImportClause($2, null), $4, $6
o 'IMPORT ImportNamespaceSpecifier FROM String', -> new ImportDeclaration new ImportClause(null, $2), $4
o 'IMPORT ImportNamespaceSpecifier FROM String ASSERT Object', -> new ImportDeclaration new ImportClause(null, $2), $4, $6
o 'IMPORT { } FROM String', -> new ImportDeclaration new ImportClause(null, new ImportSpecifierList []), $5
o 'IMPORT { } FROM String ASSERT Object', -> new ImportDeclaration new ImportClause(null, new ImportSpecifierList []), $5, $7
o 'IMPORT { ImportSpecifierList OptComma } FROM String', -> new ImportDeclaration new ImportClause(null, new ImportSpecifierList $3), $7
o 'IMPORT { ImportSpecifierList OptComma } FROM String ASSERT Object', -> new ImportDeclaration new ImportClause(null, new ImportSpecifierList $3), $7, $9
o 'IMPORT ImportDefaultSpecifier , ImportNamespaceSpecifier FROM String', -> new ImportDeclaration new ImportClause($2, $4), $6
o 'IMPORT ImportDefaultSpecifier , ImportNamespaceSpecifier FROM String ASSERT Object', -> new ImportDeclaration new ImportClause($2, $4), $6, $8
o 'IMPORT ImportDefaultSpecifier , { ImportSpecifierList OptComma } FROM String', -> new ImportDeclaration new ImportClause($2, new ImportSpecifierList $5), $9
o 'IMPORT ImportDefaultSpecifier , { ImportSpecifierList OptComma } FROM String ASSERT Object', -> new ImportDeclaration new ImportClause($2, new ImportSpecifierList $5), $9, $11
]
ImportSpecifierList: [
o 'ImportSpecifier', -> [$1]
o 'ImportSpecifierList , ImportSpecifier', -> $1.concat $3
o 'ImportSpecifierList OptComma TERMINATOR ImportSpecifier', -> $1.concat $4
o 'INDENT ImportSpecifierList OptComma OUTDENT', -> $2
o 'ImportSpecifierList OptComma INDENT ImportSpecifierList OptComma OUTDENT', -> $1.concat $4
]
ImportSpecifier: [
o 'Identifier', -> new ImportSpecifier $1
o 'Identifier AS Identifier', -> new ImportSpecifier $1, $3
o 'DEFAULT', -> new ImportSpecifier LOC(1)(new DefaultLiteral $1)
o 'DEFAULT AS Identifier', -> new ImportSpecifier LOC(1)(new DefaultLiteral($1)), $3
]
ImportDefaultSpecifier: [
o 'Identifier', -> new ImportDefaultSpecifier $1
]
ImportNamespaceSpecifier: [
o 'IMPORT_ALL AS Identifier', -> new ImportNamespaceSpecifier new Literal($1), $3
]
Export: [
o 'EXPORT { }', -> new ExportNamedDeclaration new ExportSpecifierList []
o 'EXPORT { ExportSpecifierList OptComma }', -> new ExportNamedDeclaration new ExportSpecifierList $3
o 'EXPORT Class', -> new ExportNamedDeclaration $2
o 'EXPORT Identifier = Expression', -> new ExportNamedDeclaration LOC(2,4)(new Assign $2, $4, null,
moduleDeclaration: 'export')
o 'EXPORT Identifier = TERMINATOR Expression', -> new ExportNamedDeclaration LOC(2,5)(new Assign $2, $5, null,
moduleDeclaration: 'export')
o 'EXPORT Identifier = INDENT Expression OUTDENT', -> new ExportNamedDeclaration LOC(2,6)(new Assign $2, $5, null,
moduleDeclaration: 'export')
o 'EXPORT DEFAULT Expression', -> new ExportDefaultDeclaration $3
o 'EXPORT DEFAULT INDENT Object OUTDENT', -> new ExportDefaultDeclaration new Value $4
o 'EXPORT EXPORT_ALL FROM String', -> new ExportAllDeclaration new Literal($2), $4
o 'EXPORT EXPORT_ALL FROM String ASSERT Object', -> new ExportAllDeclaration new Literal($2), $4, $6
o 'EXPORT { } FROM String', -> new ExportNamedDeclaration new ExportSpecifierList([]), $5
o 'EXPORT { } FROM String ASSERT Object', -> new ExportNamedDeclaration new ExportSpecifierList([]), $5, $7
o 'EXPORT { ExportSpecifierList OptComma } FROM String', -> new ExportNamedDeclaration new ExportSpecifierList($3), $7
o 'EXPORT { ExportSpecifierList OptComma } FROM String ASSERT Object', -> new ExportNamedDeclaration new ExportSpecifierList($3), $7, $9
]
ExportSpecifierList: [
o 'ExportSpecifier', -> [$1]
o 'ExportSpecifierList , ExportSpecifier', -> $1.concat $3
o 'ExportSpecifierList OptComma TERMINATOR ExportSpecifier', -> $1.concat $4
o 'INDENT ExportSpecifierList OptComma OUTDENT', -> $2
o 'ExportSpecifierList OptComma INDENT ExportSpecifierList OptComma OUTDENT', -> $1.concat $4
]
ExportSpecifier: [
o 'Identifier', -> new ExportSpecifier $1
o 'Identifier AS Identifier', -> new ExportSpecifier $1, $3
o 'Identifier AS DEFAULT', -> new ExportSpecifier $1, LOC(3)(new DefaultLiteral $3)
o 'DEFAULT', -> new ExportSpecifier LOC(1)(new DefaultLiteral $1)
o 'DEFAULT AS Identifier', -> new ExportSpecifier LOC(1)(new DefaultLiteral($1)), $3
]
Ordinary function invocation, or a chained series of calls.
Invocation: [
o 'Value OptFuncExist String', -> new TaggedTemplateCall $1, $3, $2.soak
o 'Value OptFuncExist Arguments', -> new Call $1, $3, $2.soak
o 'SUPER OptFuncExist Arguments', -> new SuperCall LOC(1)(new Super), $3, $2.soak, $1
o 'DYNAMIC_IMPORT Arguments', -> new DynamicImportCall LOC(1)(new DynamicImport), $2
]
An optional existence check on a function.
OptFuncExist: [
o '', -> soak: no
o 'FUNC_EXIST', -> soak: yes
]
The list of arguments to a function call.
Arguments: [
o 'CALL_START CALL_END', -> []
o 'CALL_START ArgList OptComma CALL_END', -> $2.implicit = $1.generated; $2
]
A reference to the this current object.
This: [
o 'THIS', -> new Value new ThisLiteral $1
o '@', -> new Value new ThisLiteral $1
]
A reference to a property on this.
ThisProperty: [
o '@ Property', -> new Value LOC(1)(new ThisLiteral $1), [LOC(2)(new Access($2))], 'this'
]
The array literal.
Array: [
o '[ ]', -> new Arr []
o '[ Elisions ]', -> new Arr $2
o '[ ArgElisionList OptElisions ]', -> new Arr [].concat $2, $3
]
Inclusive and exclusive range dots.
RangeDots: [
o '..', -> exclusive: no
o '...', -> exclusive: yes
]
The CoffeeScript range literal.
Range: [
o '[ Expression RangeDots Expression ]', -> new Range $2, $4, if $3.exclusive then 'exclusive' else 'inclusive'
o '[ ExpressionLine RangeDots Expression ]', -> new Range $2, $4, if $3.exclusive then 'exclusive' else 'inclusive'
]
Array slice literals.
Slice: [
o 'Expression RangeDots Expression', -> new Range $1, $3, if $2.exclusive then 'exclusive' else 'inclusive'
o 'Expression RangeDots', -> new Range $1, null, if $2.exclusive then 'exclusive' else 'inclusive'
o 'ExpressionLine RangeDots Expression', -> new Range $1, $3, if $2.exclusive then 'exclusive' else 'inclusive'
o 'ExpressionLine RangeDots', -> new Range $1, null, if $2.exclusive then 'exclusive' else 'inclusive'
o 'RangeDots Expression', -> new Range null, $2, if $1.exclusive then 'exclusive' else 'inclusive'
o 'RangeDots', -> new Range null, null, if $1.exclusive then 'exclusive' else 'inclusive'
]
The ArgList is the list of objects passed into a function call (i.e. comma-separated expressions). Newlines work as well.
ArgList: [
o 'Arg', -> [$1]
o 'ArgList , Arg', -> $1.concat $3
o 'ArgList OptComma TERMINATOR Arg', -> $1.concat $4
o 'INDENT ArgList OptComma OUTDENT', -> $2
o 'ArgList OptComma INDENT ArgList OptComma OUTDENT', -> $1.concat $4
]
Valid arguments are Blocks or Splats.
Arg: [
o 'Expression'
o 'ExpressionLine'
o 'Splat'
o '...', -> new Expansion
]
The ArgElisionList is the list of objects, contents of an array literal (i.e. comma-separated expressions and elisions). Newlines work as well.
ArgElisionList: [
o 'ArgElision'
o 'ArgElisionList , ArgElision', -> $1.concat $3
o 'ArgElisionList OptComma TERMINATOR ArgElision', -> $1.concat $4
o 'INDENT ArgElisionList OptElisions OUTDENT', -> $2.concat $3
o 'ArgElisionList OptElisions INDENT ArgElisionList OptElisions OUTDENT', -> $1.concat $2, $4, $5
]
ArgElision: [
o 'Arg', -> [$1]
o 'Elisions Arg', -> $1.concat $2
]
OptElisions: [
o 'OptComma', -> []
o ', Elisions', -> [].concat $2
]
Elisions: [
o 'Elision', -> [$1]
o 'Elisions Elision', -> $1.concat $2
]
Elision: [
o ',', -> new Elision
o 'Elision TERMINATOR', -> $1
]
Just simple, comma-separated, required arguments (no fancy syntax). We need this to be separate from the ArgList for use in Switch blocks, where having the newlines wouldn’t make sense.
SimpleArgs: [
o 'Expression'
o 'ExpressionLine'
o 'SimpleArgs , Expression', -> [].concat $1, $3
o 'SimpleArgs , ExpressionLine', -> [].concat $1, $3
]
The variants of try/catch/finally exception handling blocks.
Try: [
o 'TRY Block', -> new Try $2
o 'TRY Block Catch', -> new Try $2, $3
o 'TRY Block FINALLY Block', -> new Try $2, null, $4, LOC(3)(new Literal $3)
o 'TRY Block Catch FINALLY Block', -> new Try $2, $3, $5, LOC(4)(new Literal $4)
]
A catch clause names its error and runs a block of code.
Catch: [
o 'CATCH Identifier Block', -> new Catch $3, $2
o 'CATCH Object Block', -> new Catch $3, LOC(2)(new Value($2))
o 'CATCH Block', -> new Catch $2
]
Throw an exception object.
Throw: [
o 'THROW Expression', -> new Throw $2
o 'THROW INDENT Object OUTDENT', -> new Throw new Value $3
]
Parenthetical expressions. Note that the Parenthetical is a Value, not an Expression, so if you need to use an expression in a place where only values are accepted, wrapping it in parentheses will always do the trick.
Parenthetical: [
o '( Body )', -> new Parens $2
o '( INDENT Body OUTDENT )', -> new Parens $3
]
The condition portion of a while loop.
WhileLineSource: [
o 'WHILE ExpressionLine', -> new While $2
o 'WHILE ExpressionLine WHEN ExpressionLine', -> new While $2, guard: $4
o 'UNTIL ExpressionLine', -> new While $2, invert: true
o 'UNTIL ExpressionLine WHEN ExpressionLine', -> new While $2, invert: true, guard: $4
]
WhileSource: [
o 'WHILE Expression', -> new While $2
o 'WHILE Expression WHEN Expression', -> new While $2, guard: $4
o 'WHILE ExpressionLine WHEN Expression', -> new While $2, guard: $4
o 'UNTIL Expression', -> new While $2, invert: true
o 'UNTIL Expression WHEN Expression', -> new While $2, invert: true, guard: $4
o 'UNTIL ExpressionLine WHEN Expression', -> new While $2, invert: true, guard: $4
]
The while loop can either be normal, with a block of expressions to execute, or postfix, with a single expression. There is no do..while.
While: [
o 'WhileSource Block', -> $1.addBody $2
o 'WhileLineSource Block', -> $1.addBody $2
o 'Statement WhileSource', -> (Object.assign $2, postfix: yes).addBody LOC(1) Block.wrap([$1])
o 'Expression WhileSource', -> (Object.assign $2, postfix: yes).addBody LOC(1) Block.wrap([$1])
o 'Loop', -> $1
]
Loop: [
o 'LOOP Block', -> new While(LOC(1)(new BooleanLiteral 'true'), isLoop: yes).addBody $2
o 'LOOP Expression', -> new While(LOC(1)(new BooleanLiteral 'true'), isLoop: yes).addBody LOC(2) Block.wrap [$2]
]
Array, object, and range comprehensions, at the most generic level. Comprehensions can either be normal, with a block of expressions to execute, or postfix, with a single expression.
For: [
o 'Statement ForBody', -> $2.postfix = yes; $2.addBody $1
o 'Expression ForBody', -> $2.postfix = yes; $2.addBody $1
o 'ForBody Block', -> $1.addBody $2
o 'ForLineBody Block', -> $1.addBody $2
]
ForBody: [
o 'FOR Range', -> new For [], source: (LOC(2) new Value($2))
o 'FOR Range BY Expression', -> new For [], source: (LOC(2) new Value($2)), step: $4
o 'ForStart ForSource', -> $1.addSource $2
]
ForLineBody: [
o 'FOR Range BY ExpressionLine', -> new For [], source: (LOC(2) new Value($2)), step: $4
o 'ForStart ForLineSource', -> $1.addSource $2
]
ForStart: [
o 'FOR ForVariables', -> new For [], name: $2[0], index: $2[1]
o 'FOR AWAIT ForVariables', ->
[name, index] = $3
new For [], {name, index, await: yes, awaitTag: (LOC(2) new Literal($2))}
o 'FOR OWN ForVariables', ->
[name, index] = $3
new For [], {name, index, own: yes, ownTag: (LOC(2) new Literal($2))}
]
An array of all accepted values for a variable inside the loop. This enables support for pattern matching.
ForValue: [
o 'Identifier'
o 'ThisProperty'
o 'Array', -> new Value $1
o 'Object', -> new Value $1
]
An array or range comprehension has variables for the current element and (optional) reference to the current index. Or, key, value, in the case of object comprehensions.
ForVariables: [
o 'ForValue', -> [$1]
o 'ForValue , ForValue', -> [$1, $3]
]
The source of a comprehension is an array or object with an optional guard clause. If it’s an array comprehension, you can also choose to step through in fixed-size increments.
ForSource: [
o 'FORIN Expression', -> source: $2
o 'FOROF Expression', -> source: $2, object: yes
o 'FORIN Expression WHEN Expression', -> source: $2, guard: $4
o 'FORIN ExpressionLine WHEN Expression', -> source: $2, guard: $4
o 'FOROF Expression WHEN Expression', -> source: $2, guard: $4, object: yes
o 'FOROF ExpressionLine WHEN Expression', -> source: $2, guard: $4, object: yes
o 'FORIN Expression BY Expression', -> source: $2, step: $4
o 'FORIN ExpressionLine BY Expression', -> source: $2, step: $4
o 'FORIN Expression WHEN Expression BY Expression', -> source: $2, guard: $4, step: $6
o 'FORIN ExpressionLine WHEN Expression BY Expression', -> source: $2, guard: $4, step: $6
o 'FORIN Expression WHEN ExpressionLine BY Expression', -> source: $2, guard: $4, step: $6
o 'FORIN ExpressionLine WHEN ExpressionLine BY Expression', -> source: $2, guard: $4, step: $6
o 'FORIN Expression BY Expression WHEN Expression', -> source: $2, step: $4, guard: $6
o 'FORIN ExpressionLine BY Expression WHEN Expression', -> source: $2, step: $4, guard: $6
o 'FORIN Expression BY ExpressionLine WHEN Expression', -> source: $2, step: $4, guard: $6
o 'FORIN ExpressionLine BY ExpressionLine WHEN Expression', -> source: $2, step: $4, guard: $6
o 'FORFROM Expression', -> source: $2, from: yes
o 'FORFROM Expression WHEN Expression', -> source: $2, guard: $4, from: yes
o 'FORFROM ExpressionLine WHEN Expression', -> source: $2, guard: $4, from: yes
]
ForLineSource: [
o 'FORIN ExpressionLine', -> source: $2
o 'FOROF ExpressionLine', -> source: $2, object: yes
o 'FORIN Expression WHEN ExpressionLine', -> source: $2, guard: $4
o 'FORIN ExpressionLine WHEN ExpressionLine', -> source: $2, guard: $4
o 'FOROF Expression WHEN ExpressionLine', -> source: $2, guard: $4, object: yes
o 'FOROF ExpressionLine WHEN ExpressionLine', -> source: $2, guard: $4, object: yes
o 'FORIN Expression BY ExpressionLine', -> source: $2, step: $4
o 'FORIN ExpressionLine BY ExpressionLine', -> source: $2, step: $4
o 'FORIN Expression WHEN Expression BY ExpressionLine', -> source: $2, guard: $4, step: $6
o 'FORIN ExpressionLine WHEN Expression BY ExpressionLine', -> source: $2, guard: $4, step: $6
o 'FORIN Expression WHEN ExpressionLine BY ExpressionLine', -> source: $2, guard: $4, step: $6
o 'FORIN ExpressionLine WHEN ExpressionLine BY ExpressionLine', -> source: $2, guard: $4, step: $6
o 'FORIN Expression BY Expression WHEN ExpressionLine', -> source: $2, step: $4, guard: $6
o 'FORIN ExpressionLine BY Expression WHEN ExpressionLine', -> source: $2, step: $4, guard: $6
o 'FORIN Expression BY ExpressionLine WHEN ExpressionLine', -> source: $2, step: $4, guard: $6
o 'FORIN ExpressionLine BY ExpressionLine WHEN ExpressionLine', -> source: $2, step: $4, guard: $6
o 'FORFROM ExpressionLine', -> source: $2, from: yes
o 'FORFROM Expression WHEN ExpressionLine', -> source: $2, guard: $4, from: yes
o 'FORFROM ExpressionLine WHEN ExpressionLine', -> source: $2, guard: $4, from: yes
]
Switch: [
o 'SWITCH Expression INDENT Whens OUTDENT', -> new Switch $2, $4
o 'SWITCH ExpressionLine INDENT Whens OUTDENT', -> new Switch $2, $4
o 'SWITCH Expression INDENT Whens ELSE Block OUTDENT', -> new Switch $2, $4, LOC(5,6) $6
o 'SWITCH ExpressionLine INDENT Whens ELSE Block OUTDENT', -> new Switch $2, $4, LOC(5,6) $6
o 'SWITCH INDENT Whens OUTDENT', -> new Switch null, $3
o 'SWITCH INDENT Whens ELSE Block OUTDENT', -> new Switch null, $3, LOC(4,5) $5
]
Whens: [
o 'When', -> [$1]
o 'Whens When', -> $1.concat $2
]
An individual When clause, with action.
When: [
o 'LEADING_WHEN SimpleArgs Block', -> new SwitchWhen $2, $3
o 'LEADING_WHEN SimpleArgs Block TERMINATOR', -> LOC(1, 3) new SwitchWhen $2, $3
]
The most basic form of if is a condition and an action. The following if-related rules are broken up along these lines in order to avoid ambiguity.
IfBlock: [
o 'IF Expression Block', -> new If $2, $3, type: $1
o 'IfBlock ELSE IF Expression Block', -> $1.addElse LOC(3,5) new If $4, $5, type: $3
]
The full complement of if expressions, including postfix one-liner if and unless.
If: [
o 'IfBlock'
o 'IfBlock ELSE Block', -> $1.addElse $3
o 'Statement POST_IF Expression', -> new If $3, LOC(1)(Block.wrap [$1]), type: $2, postfix: true
o 'Expression POST_IF Expression', -> new If $3, LOC(1)(Block.wrap [$1]), type: $2, postfix: true
]
IfBlockLine: [
o 'IF ExpressionLine Block', -> new If $2, $3, type: $1
o 'IfBlockLine ELSE IF ExpressionLine Block', -> $1.addElse LOC(3,5) new If $4, $5, type: $3
]
IfLine: [
o 'IfBlockLine'
o 'IfBlockLine ELSE Block', -> $1.addElse $3
o 'Statement POST_IF ExpressionLine', -> new If $3, LOC(1)(Block.wrap [$1]), type: $2, postfix: true
o 'Expression POST_IF ExpressionLine', -> new If $3, LOC(1)(Block.wrap [$1]), type: $2, postfix: true
]
Arithmetic and logical operators, working on one or more operands. Here they are grouped by order of precedence. The actual precedence rules are defined at the bottom of the page. It would be shorter if we could combine most of these rules into a single generic Operand OpSymbol Operand -type rule, but in order to make the precedence binding possible, separate rules are necessary.
OperationLine: [
o 'UNARY ExpressionLine', -> new Op $1, $2
o 'DO ExpressionLine', -> new Op $1, $2
o 'DO_IIFE CodeLine', -> new Op $1, $2
]
Operation: [
o 'UNARY Expression', -> new Op $1.toString(), $2, undefined, undefined, originalOperator: $1.original
o 'DO Expression', -> new Op $1, $2
o 'UNARY_MATH Expression', -> new Op $1, $2
o '- Expression', (-> new Op '-', $2), prec: 'UNARY_MATH'
o '+ Expression', (-> new Op '+', $2), prec: 'UNARY_MATH'
o 'AWAIT Expression', -> new Op $1, $2
o 'AWAIT INDENT Object OUTDENT', -> new Op $1, $3
o '-- SimpleAssignable', -> new Op '--', $2
o '++ SimpleAssignable', -> new Op '++', $2
o 'SimpleAssignable --', -> new Op '--', $1, null, true
o 'SimpleAssignable ++', -> new Op '++', $1, null, true
o 'Expression ?', -> new Existence $1
o 'Expression + Expression', -> new Op '+' , $1, $3
o 'Expression - Expression', -> new Op '-' , $1, $3
o 'Expression MATH Expression', -> new Op $2, $1, $3
o 'Expression ** Expression', -> new Op $2, $1, $3
o 'Expression SHIFT Expression', -> new Op $2, $1, $3
o 'Expression COMPARE Expression', -> new Op $2.toString(), $1, $3, undefined, originalOperator: $2.original
o 'Expression & Expression', -> new Op $2, $1, $3
o 'Expression ^ Expression', -> new Op $2, $1, $3
o 'Expression | Expression', -> new Op $2, $1, $3
o 'Expression && Expression', -> new Op $2.toString(), $1, $3, undefined, originalOperator: $2.original
o 'Expression || Expression', -> new Op $2.toString(), $1, $3, undefined, originalOperator: $2.original
o 'Expression BIN? Expression', -> new Op $2, $1, $3
o 'Expression RELATION Expression', -> new Op $2.toString(), $1, $3, undefined, invertOperator: $2.invert?.original ? $2.invert
o 'SimpleAssignable COMPOUND_ASSIGN
Expression', -> new Assign $1, $3, $2.toString(), originalContext: $2.original
o 'SimpleAssignable COMPOUND_ASSIGN
INDENT Expression OUTDENT', -> new Assign $1, $4, $2.toString(), originalContext: $2.original
o 'SimpleAssignable COMPOUND_ASSIGN TERMINATOR
Expression', -> new Assign $1, $4, $2.toString(), originalContext: $2.original
]
DoIife: [
o 'DO_IIFE Code', -> new Op $1 , $2
]
Operators at the top of this list have higher precedence than the ones lower
down. Following these rules is what makes 2 + 3 * 4
parse as:
2 + (3 * 4)
And not:
(2 + 3) * 4
operators = [
['right', 'DO_IIFE']
['left', '.', '?.', '::', '?::']
['left', 'CALL_START', 'CALL_END']
['nonassoc', '++', '--']
['left', '?']
['right', 'UNARY', 'DO']
['right', 'AWAIT']
['right', '**']
['right', 'UNARY_MATH']
['left', 'MATH']
['left', '+', '-']
['left', 'SHIFT']
['left', 'RELATION']
['left', 'COMPARE']
['left', '&']
['left', '^']
['left', '|']
['left', '&&']
['left', '||']
['left', 'BIN?']
['nonassoc', 'INDENT', 'OUTDENT']
['right', 'YIELD']
['right', '=', ':', 'COMPOUND_ASSIGN', 'RETURN', 'THROW', 'EXTENDS']
['right', 'FORIN', 'FOROF', 'FORFROM', 'BY', 'WHEN']
['right', 'IF', 'ELSE', 'FOR', 'WHILE', 'UNTIL', 'LOOP', 'SUPER', 'CLASS', 'IMPORT', 'EXPORT', 'DYNAMIC_IMPORT']
['left', 'POST_IF']
]
Finally, now that we have our grammar and our operators, we can create our Jison.Parser. We do this by processing all of our rules, recording all terminals (every symbol which does not appear as the name of a rule above) as “tokens”.
tokens = []
for name, alternatives of grammar
grammar[name] = for alt in alternatives
for token in alt[0].split ' '
tokens.push token unless grammar[token]
alt[1] = "return #{alt[1]}" if name is 'Root'
alt
Initialize the Parser with our list of terminal tokens, our grammar rules, and the name of the root. Reverse the operators because Jison orders precedence from low to high, and we have it high to low (as in Yacc).
exports.parser = new Parser
tokens : tokens.join ' '
bnf : grammar
operators : operators.reverse()
startSymbol : 'Root'